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Part II. Smoldyn Code Documentation
Steven Andrews

The main code is separated into three files.  smoldyn.c contains the main() function,
some high level functions for running the simulation, and the graphics routines.
smollib.c and its header smollib.h contain the structure declarations and low level
routines.  Functions include ones that allocate and free memory, calculate simulation
parameters, set up the simulation, run the simulation, and provide diagnostics.  This is the
core of the program.  Finally, smollib2.c and its header smollib2.h implement
commands for the runtime interpreter.  It is expected that more commands will be desired
on a regular basis, so this library will be appended regularly.

1.  Compiling Smoldyn

For the most part, Smoldyn is written in plain ANSII C.  Minor exceptions are that a
few very minor and standard updates to strict ANSII are used, such as the characters “//”
to indicate a comment.  Also, Smoldyn uses OpenGL graphics which requires the
graphics libraries gl.c, glut.c, and their header files.  These libraries are available on a
wide variety of systems including Macintosh, Windows, and Unix.  To save images as
TIFF files, Smoldyn also includes an enormous library of files that were written by Sam
Leffler.  Most of them are not used at all, but I couldn’t seem to separate the useful from
the useless ones.   In principle, neither the OpenGL nor the TIFF libraries are needed but
they are often very useful.

Proper file linking seems to be a mystical aspect of C programming, so getting all
these files to load and link properly can be a major challenge.  Following are a few words
of advice.

Macintosh, Windows, and Unix (including Linux) all use different line termination
characters.  Macintosh uses a carriage return, Unix uses a line feed, and Windows uses
both.  If files aren’t converted properly, this will cause problems.  I think that most
Macintosh and Windows compilers convert code automatically, but this needs to be
checked for your particular compiler.  However, Unix does not.  There are various ways
to convert files in Unix; for example, you can use the “sed” command, or there is a file-
conversion option that you can select in the “mule” menu in emacs.

2.  Include files, macros, variables, etc.

2.1 Include files

smoldyn.c, non-OpenGL
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
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#include "smollib.h"
#include "smollib2.h"
#include "string2.h"
#include "SimCommand.h"

smoldyn.c, with OpenGL
#include "opengl2.h"
#include <gl.h>
#include <glut.h>

smollib.h
#include "SimCommand.h"

smollib.c
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <ctype.h>
#include "Rn.h"
#include "Zn.h"
#include "random.h"
#include "string2.h"
#include "math2.h"
#include "rxnparam.h"
#include "SimCommand.h"
#include "smollib.h"
#include "smollib2.h"
#include "VoidComp.h"
#include "Geometry.h"
#include "opengl2.h"

smollib2.h
#include "SimCommand.h"
#include "smollib.h"

smollib2.c
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "Rn.h"
#include "Zn.h"
#include "random.h"
#include "string2.h"
#include "smollib2.h"
#include "opengl2.h"
#include "SimCommand.h"

#include "opengl2.h"
#include <gl.h>
#include <glut.h>
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In principle, these are simple and self-explanatory.  As noted above though, proper
linking and compiling can be challenging.

2.2 Constants and global variables

smoldyn.c
#define SMOLDYN_VERSION 1.72
simptr Sim;
int Vb,*Ctr;
time_t Tstt;

smollib.c
#define RANDTABLEMAX 4095
#define PSMAX 5
double GaussTable[RANDTABLEMAX+1];

The notation used is that macros and constants defined with the pre-processor are in
all capitals, global variables are preceded by a capital letter, and local variables are in all
lower case.  Variables that have a meaning have meaningful names, whereas those that
are scratch space have generic names that simply indicate the variable types.  All of these
macros and global variables are global only within their source file, so that they are not
accessible to other files.

SMOLDYN_VERSION is the current version number of Smoldyn.

Sim is a global variable for the current simulation structure.  This, as well as the other
global variables in smoldyn.c are only used when graphics are being shown using
OpenGL, because OpenGL does not allow variables to be passed in the normal way
between functions.

Vb is a global flag for verbose operation, equal to 1 if yes, 0 if no.

Ctr is a global array of simulation counters, which count the total number of events that
occur during a simulation.  Index 0 is for zeroth order reactions, 1 is for first order
reactions, 2 is for second order reactions within a partition, 3 is for second order
reactions between partitions, and 4 is for wall collisions.

Tstt is a global variable for the starting time of simulation execution, allowing the total
runtime to be determined.

RANDTABLEMAX is the maximum element number of the random number conversion table,
which is used both for allocating the table (with 1 more element) and as a bit mask
for random number routines.  Note that it needs to be 1 less than an integer power
of 2.
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PSMAX is the maximum number of panel shapes defined.  Currently it is 5 for rectangle,
triangle, sphere, cylinder, and hemisphere.

GaussTable is a table to convert uniform random values to normally distributed ones.

2.3 Macros

smollib.c
#define CHECK(A) if(!(A)) goto failure
#define CHECKS(A,B) if(!(A)) {strncpy(erstr,B,STRCHAR);goto failure;}

CHECK is a useful macro for several routines in which any of several problems may occur,
but all problems result in freeing structures and leaving.  Program flow goes to the
label failure if A is false.  Many people would consider both the use of a macro
function and the use of a goto statement to be bad programming practice, and
especially bad when used together.  However, in this case it significantly improves
code readability.  As usual, partially defined structures should always be kept
traversable and in good order so they can be freed at any time.  However, there is
one subtle situation where CHECK can cause surprising behavior, which must be
looked out for:

if(test)
CHECK(a==b); WRONG

else {... }

The problem is that CHECK is a macro for an if() statement, so the else in the above
example becomes an else for the CHECK, rather than an else for the if(test)
portion, as intended.  Instead, this should be coded with braces:

if(test) {
CHECK(a==b); } RIGHT

else {... }

CHECKS is identical to CHECK, except that it also copies the included string to the variable
erstr if a failure occurs.  This is useful for error reporting.  The same comments
made above are important here as well.

2.4 Local variables

It has proven useful to use consistent names for local variables for code readability.
In places, there are exceptions, but the following table lists the typical uses for most local
variables:

variable        type                       use                            
a double binding radius for bimolecular reaction
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b,b2 int box address
blist boxptr* list of boxes, index is [b]
boxs boxssptr pointer to box superstructure
bptr boxptr pointer to box
bval double unbinding radius for bimolecular reaction
ch char generic character
cmd cmdptr pointer to a command
cmds cmdssptr pointer to the command superstructure
d int dimension number
dc1,dc2 double diffusion coefficients for molecules
dead moleculeptr* list of dead molecules, index [m]
difc double* list of diffusion coefficients, index [i]
dsum double sum of diffusion coefficients
dim int dimensionality of space
dt double time step
er int error code
erstr char* error string
flt1,flt2 double generic double variable
fptr FILE* file stream
got int[] flag for if parameter is known yet
i int molecule identity, reactant number, or generic integer
i1,i2,… int molecule identities
indx int* dim dimensional index of box position
itct int count of number of items read from a string
j int number of reaction for certain i
lctr int line number counter for reading text file
line char[] complete line of text
line2 char* pointer to unparsed portion of string
live moleculeptr** list of live molecules, index [ll][m]
ll int index of live list
m,m2,m3 int index of molecule in list
m1,m2,m3 int* scratch space matrices of size dimxdim
mlist moleculeptr* list of molecules, index is [m]
mols molssptr pointer to molecule superstructure
mptr moleculeptr pointer to molecule
mptr1,mptr2 moleculeptr pointer to more molecules
name char** names of molecules, index is [i]
nbox int number of boxes
ni2o int value of nident^order
nident int number of molecule identities
nl int* number of live molecules in a live list, index [ll]
nm,nm2 char[] name of molecule, reaction, or surface
nmol int number of molecules in list
npnl int number of panels for a surface
npts int number of points for a surface panel
nprod int*,int number of products for reaction [r]
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nrxn int* number of reactions for [i]
nsrf int number of surfaces
o2 int order of second reaction
optr int* pointer to the order of reaction
order int order of reaction
p int reaction product number
p int panel number for surfaces
pgemptr double* pointer to probability of geminate recombination
point double** list of points that define a panel [p][pt]
prod moleculeptr** list of products for reaction [r], index is [p]
pnl panelptr pointer to a panel
pnls panelptr* list of panels
ps int panel shape, 0=rect, 1=triangle, 2=sphere
pshape char panel shape, ‘r’=rect, ‘t’=triangle, ‘s’=sphere
pt int index for points, for surfaces
r int reaction number
r2 int reaction number for second reaction
rate double* requested rate of reaction [r]
rate2 double* internal rate parameter of reaction [r]
rate3 double actual rate of reaction
rev int code for reaction reversibility; see findreverserxn
rname char** names of reactions, index is [r]
rpar double,double* reversible parameter, index is [r]
rpart char,char* reversible parameter type, index is [r]
rptr int* pointer to reaction number
rxn rxnptr pointer to a reaction structure
rxn2 rxnptr pointer to a second reaction structure
s int surface number
side int* number of boxes on each side of space, index [d]
sim simptr pointer to simulation structure
smptr simptr* pointer to pointer to simulation structure
srf surfaceptr pointer to a surface structure
srfss surfacessptr pointer to a surface superstructure
step double rms step length of molecule or molecules
str1 char[] generic string
table int** table of reaction numbers for [i][j]
topd int top of empty molecules in dead list
total int total number of reactions in list
v1,v2,v3 int* scratch space vectors of size dim
w int index of wall
wlist wallptr* list of walls, index is [w]
word char[] first word of a line of text
wptr wallptr pointer to wall

3.  Structures and core functions – smollib.h, smollib.c



40

While Smoldyn is written in C, it uses an object oriented approach to programming,
making the proper maintenance of structures one of the central aspects of the program.
The structures and core functions are described below.  In general, the basic objects are
molecules, walls, surfaces, and virtual boxes, each of which has its own structure.  In
many cases, these items are grouped together into superstructures, which are basically
just a list of fundamental elements, along with some more information that pertains to the
whole list.  Reactions aren’t really objects, but are also among the core data structures.
Finally, a simulation structure is a high level structure which contains all the parameters
and the current state of the simulation.

An aspect of structures that is important to note, especially if changes are made, is
which structures own what elements.  For example, a molecule owns its position vector,
meaning that that piece of memory was allocated with the molecule and will be freed
with the molecule.  On the other hand, a molecule does not own a virtual box, but merely
points to the one that it is in.

All allocation routines return either a pointer to the structure that was allocated, or
NULL if memory wasn’t available.  Assuming that they succeed, all structure members are
intitiallized, typically to 0 or NULL depending on the member type.  All the memory
freeing routines are robust in that they don’t mind NULL inputs or NULL internal pointers.
However, this is only useful and robust if allocation is done in an order that always keeps
the structure traversable and keeps pointers set to NULL until they are ready to be
initiallized.

Both the code and the description below are sorted into categories: molecules,
walls, reactions, boxes, surfaces, and the simulation structure.  In many cases, functions
within each category work with only their respective object.  However, be forwarned that
the core program is highly integrated so that functions in one category may use objects in
another category.  While there are a few exceptions, in general, functions in one category
do not write to objects in other categories.

3.1 Molecules

Each individual molecule is stored with a moleculestruct structure, pointed to by a
moleculeptr.  This contains information about the molecule’s position, identity, and other
characteristics that are specific to each individual molecule.  These molecules are
organized using a molecule superstructure, which contains lists of the active molecules, a
list of unused molecule storage space called dead molecules, and lots of other information
about the molecules in general.

typedef struct moleculestruct {
  long int serno; serial number
  double *pos; dim dimensional vector for position
  double *posx; dim dimensional vector for old position
  int ident; identity of molecule; 0 is empty
  struct boxstruct *box; pointer to box which molecule is in
  struct panelstruct *pnl; last panel interacted with
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  char face; face of last panel interacted with
  double *via; location of last surface interaction
  } *moleculeptr;

moleculestruct is a structure used for each molecule.  serno is the unique serial
number that each live molecule has; it is updated when the molecule is placed on the live
list.  pos and posx, both of which are owned by the structure, are always valid positions,
although not necessarily within the system volume.  posx is the position from the
previous time step, used to determine if a molecule crossed a wall or surface.  ident
should always be between 0 and nident-1, inclusive.  A molecule type of 0 is an empty
molecule for transfer to the dead list.  Except during setup, box should always point to a
valid box.  If this molecule interacts with a surface during the current time step, pnl
points to the most recent panel hit, face is the face of the panel that was hit, and via is the
location of that interaction.

typedef struct molsuperstruct {
  double *difc; diffusion constants for each identity
  double *difstep; rms diffusion step for each identity
  double **difm; diffusion matrix for each identity
  double *display; size of molecule in graphical display
  double **color; RGB color vector for each identity
  double **grphdata; all position data for graphics
  int *grphser; number of rows in columns of grphdata
  moleculeptr *live[2]; live molecules in system (0 mobile, 1 fixed)
  moleculeptr *dead; list of dead molecules
  int max; size of each molecule list
  int nl[2]; number of molecules in live lists
  int topl[2]; index for live lists; above are reborn
  int nd; total number of molecules in dead list
  int topd; index for dead list; above are resurrected
  long int serno; } *molssptr; serial number for next resurrected molec.

molsuperstruct contains and owns information about molecular properties and it
also contains and owns three lists of molecules.  Diffusion is described with difc, which
is a maxident length vector of diffusion constants; difstep is a maxident length vector of
the rms displacements on each coordinate during one time step if diffusion is isotropic;
and difm is a maxident length list where each element is either a NULL value if diffusion is
isotropic or a dimxdim size diffusion matrix (actually the square root of the matrix).
display is simply the size of molecules for graphical output (which scales differently for
different output styles) and color is the 3-dimensional color vector for each molecule.
grphdata and grphser are data space that are not used by the simulation, but are filled in
and used for the graphical output.

The molecule lists are separated into two parts.  The first set is the live list, which
are those molecules that are actually in the system; the others are in the dead list, are
empty molecules, and have no influence on the system.  The two parts of the live list are
the mobile molecules (live[0]) and the fixed molecules (live[1]).  They are
differentiated solely by whether their diffusion constants are zero and are separated into
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two lists to speed up bimolecular reaction routines.  All lists have size max (the total
number of molecules allocated), which means that any list can contain all molecules, if
needed.  If more molecules are needed in the system than the total number allocated, the
program sends an error message and ends; in the future, it may be possible to
dynamically create larger lists.  Upon initiallization, all molecules are created as empty
molecules in the dead list and both live lists are full of NULLs, whereas during program
execution, all lists are typically partially full.  After sorting, each live list, ll, has active
molecules from element 0 to element nl[ll]-1, inclusive, and has undefined contents
from nl[ll] to max-1.  Similarly, the dead list is filled with empty molecules from 0 to
nd-1, and has undefined contents from nd to max-1; in this case, topd equals nd.

Functions other than molsort, such as chemical reactions, are allowed to kill live
molecules or resurrect dead ones but they should not move molecules or change the list
indicies except for topd.  To kill a molecule from one of the live lists, just set the
molecule identity to 0.  To resurrect a dead molecule, decrement topd by one (making
sure it wasn’t equal to 0) and set the identity of the now topd molecule in the dead list as
desired.  Also, set the box element of the molecule to point to the proper box, but do not
add the molecule to that box’s molecule list.  It is now in the resurrected list, which is the
top of the dead list between topd and nd-1, inclusive.  Routines should be written so that
these mis-sorted molecules do not cause problems.  To sort them, call molsort, which
moves the empty molecules in the live lists to the dead list, moves the resurrected ones to
the top of the proper live list, compacts the live lists while maintaining the molecule
order, and finally identifies the newly reborn molecules in the live lists by setting
topl[ll]; the reborn molecules extend from topl[ll] to nl[ll].

Example of the lists:

index             live[0]              live[1]               dead
8 max ? max ? max ?
7 - - -
6 - - -
5 - - -
4 - - -
3 nl[0] - - nd -
2 2 topl[1],nl[1] - topd 1
1 topl[0] 1 0 0
0 0 3 0

Here, each list has max=8, and so is indexed with m from 0 to 7.  A ‘?’ is memory that is
not part of that which was allocated, a ‘-’ is a NULL value, a ‘0’ is an empty molecule, and
other numbers are other identities (‘1’ and ‘2’ are mobile, whereas ‘3’ is immobile).  The
‘0’s in the the two live lists are to be transferred to the dead list during the next sort,
while the ‘1’ in the dead list has been resurrected and is to be moved to mobile live list.
Based on the topl[0] index, it can be seen that the ‘1’ and ‘2’ in the mobile live list were
just put there during the last sorting, and so are reborn molecules.

moleculeptr molalloc(int dim)
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molalloc allocates and initiallizes a new moleculestruct.  The box and diffusion
matrix members are returned as NULL.

void molfree(moleculeptr mptr)
molfree frees the space allocated for a moleculestruct, as well as its two position
vectors.

molssptr molssalloc(int dim,int max,int maxident);
molssalloc allocates and initiallizes a molecule superstructure with max molecule
spaces in each of the three lists.  max must be at least 1.  The dead list is filled with
empty molecules.  The molecule boxes are left as NULLs, and need to be set.  Book
keeping elements for the lists are set to their initial values.

void molssfree(molssptr mols,int maxident);
molssfree frees both a superstructure of molecules and all the molecules in all its
lists.

void molssoutput(simptr sim);
molssoutput prints all the parameters in a molecule superstructure.  While it should
not be needed, hopefully, this routine looks for and prints out information on
molecules that are not sorted correctly in the live and dead lists.  It also prints out
information about each molecule, including diffusion constants, rms step lengths,
colors, and display sizes.

void setdiffusion(simptr sim);
This sets up the diffusion coefficient related aspects of the molecule superstructure.
If difm is initiallized but not difc, then it creates difc.  It also assigns difstep.

int molsort(molssptr mols,int difsort);
molsort updates the live and dead lists of both a molecule superstructure and the
relevent boxes after a reaction or other changes.  If difsort is 0, it assumes that live
molecules are in the correct live list, otherwise, it sorts this too (the only way it’s
likely to need sorting is if a command changes a molecule’s identity).  First it deals
with diffusion sorting, if requested, by moving missorted molecules to the
resurrected list.  Afterwards, it moves the resurrected molecules off the top of the
dead list (those numbered between top and nd-1) to the live list.  Then it moves the
expired molecules from the live list to the dead list.  Finally it compacts the live list.
Molecule ordering in lists is preserved.  Molecules don’t have to be in the correct
boxes, but it is assumed that each molecule that has been killed is in a box: each
molecule’s box element must point to a box, and those boxs’ molecule lists must list
the respective molecules.  Resurrected molecules need to have the proper box listed
in the molecule structure, but should not be listed in the box list; this listing is taken
care of here.  The routine returns 0 for normal operation and 1 if memory could not
be allocated when a box was being expanded.

void diffuse(simptr sim);
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diffuse does the diffusion for all molecules in the live[0] list (mobile), over one
time step.  Walls are ignored and molecules are not reassigned to the boxes.  If there
is a diffusion matrix, it is used for anisotropic diffusion; otherwise isotropic
diffusion is done, using the difstep parameter.  Assuming molecules were assigned
to the proper boxes initially, the new posx molecule element (prior position) should
be inside the box that is listed, and in which the molecule is still listed.

3.2 Walls

The simulation volume is defined by its bounding walls.  If no other surfaces are
defined, these walls can be reflecting, periodic, absorbing, or transparent.  Because walls
can be transparent, molecules can leave the simulation volume.  However, this can be a
bad idea because the virtual boxes are defined to exactly fill the volume within the walls,
so molecules or surfaces outside of the simulation volume can lead to very slow
simulations.  Also, the graphics are designed for the simulation volume within the walls.
If surfaces are defined, then walls, regardless of how they are set up, are simulated as
though they are transparent.

Walls are quite simple, defined with only a simple structure and no superstructure.
A simulation always has 2*dim walls.

typedef struct wallstruct {
  int wdim; dimension number of perpendicular to wall
  int side; low side of space (0) or high side (1)
  double pos; position of wall along dim axis
  char type; properties of wall
  struct wallstruct *opp; } *wallptr; pointer to opposite wall

wallstruct (declared in smollib.h) is a structure used for each wall.  The type may
be one of four characters, representing the four possible boundary conditions.

type               boundary
r reflecting
p periodic
a absorbing
t transparent

Pointers to the opposite walls are used for wrap-around diffusion, but are simply
references.  There is no superstructure of walls, but, instead a list of walls is used.
Walls need to be in a particular order: walls numbered 0 and 1 are the low and high
position walls for the 0 coordinate, the next pair are for the 1 coordinate, and so on
up to the 2*dim–1 wall.  These walls are designed to be bounds of simulated space,
and are not configured well to act as membranes.

wallptr wallalloc(void);
wallalloc allocates and initializes a new wall.  The pointer to the opposite wall
needs to be set.
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void wallfree(wallptr wptr);
wallfree frees a wall.

wallptr *wallsalloc(int dim);
wallsalloc allocates an array of pointers to 2*dim walls, allocates each of the walls,
and sets them to default conditions (reflecting walls at 0 and 1 on each coordinate)
with correct pointers in each opp member.

void wallsfree(wallptr *wlist,int dim);
wallsfree frees an array of 2*dim walls, including the walls.

void walloutput(int dim,wallptr *wlist);
walloutput prints the wall structure information, including wall dimensions,
positions, and types, as well as the total simulation volume.

int checkwalls(simptr sim);
checkwalls does the reflection, wrap-around, or absorption of molecules at walls by
checking the current position, relative to the wall positions (as well as a past
position for absorbing walls).  It does not reassign the molecules to boxes or sort the
live and dead ones.  Ideally, molecules should be assigned to the box where the
molecule’s posx location is, although results are almost certainly identical if they
are assigned to the box for the pos location.  It returns the number of wall collisions
that were detected and processed during that time step.

3.3 Reactions

Despite the fact that reactions are stored in only one reasonably small structure,
they are still complicated.

typedef struct rxnstruct {
  int order; order of reactions listed: 0, 1, or 2
  int *nrxn; number of reactions for each set of reactants
  int **table; lookup list of reaction numbers
  int lists; live lists that have reactions
  int total; total number of reactions listed
  char **rname; names of reactions
  double *rate; list of requested reaction rates
  double *rate2; reaction rates modified for compuation
  double *rpar; parameter for reaction of products
  char *rpart; type of parameter in rpar
  int *nprod; number of products for each reaction
  moleculeptr **prod; } *rxnptr; templates of products for each reaction

rxnstruct (declared in smollib.h) is a structure used for a complete set of zeroth
order, unimolecular, bimolecular reactions, or higher order reactions.  All
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components of all lists in the structure are owned by the structure.  While these
structures are complicated, they are also quite versatile and fast to use.  The table
member is a lookup table of all possible reactant combinations, returning an index
value of the reaction, if one occurs, called a reaction number.  The reaction
parameters, such as the reaction names, rates, and product list are then listed
sequentially in order of reaction numbers.  The dimensionality of the lookup table is
the reaction order.  If order is 0, then there are no reactants to worry about; nrxn
and table are allocated and initiallized so that nrxn[0]=0 and table[0]=NULL, and
there are no higher indicies allowed.  If order is 1, then nrxn[i] is the number of
unimolecular reactions that molecules of type i can undergo and table[i] is a list
of nrxn[i] reaction numbers.  For example, table[i][j] is the reaction number of
the j’th unimolecular reaction for molecule i.  Clearly, empty molecules are
included in these lists, accessed with nrxn[0] and table[0], where the former
should always equal 0 and the latter should always be NULL.  If order is 2, the same
scheme is followed, although now i is an index for a two dimensional array.  For
example, the number of bimolecular reactions possible between molecules i1 and
i2 is found by first defining i=maxident*i1+i2 with the result of nrxn[i] possible
reactions.  For all reaction orders, nrxn and the first index of table extend from 0 to
maxidentorder.  lists is a parameter used to prevent having to scan molecule lists for
reactions that don’t exist.  For zeroth order reactions, lists is set to 0.  For first order
reactions, lists is 0 if no molecules have any reactions, 1 if only mobile molecules
have reactions, 2 if only immobile molecules have reactions, and 3 for both.  For
second order reactions, lists is 0 if no molecules have any reactions, 1 for only
mobile-mobile, 2 for only mobile-immobile, 3 for both.

total is the total number of reactions listed in the structure.  rate, rate2, rpar,
rpart, nprod, and the first indicies of rname and prod are all allocated to have total
elements.  The reaction rates are given in rate, although these are generally bulk
reaction rates rather than microscopic molecular parameters.  rate2 is the rate
information used by the simulation routines: if order is 0, rate2 is the average
number of molecules produced per time step; if order is 1, rate2 is the probability
that a molecule reacts during one time step; if order is 2, rate2 is the squared
collision distance between the relevent pair of reactant molecules.  Note that the
value of rate is independent of the time step, whereas the value of rate2 depends
strongly on the time step.  Both rate and rate2 are initiallized to –1, and stay that
way until they are replaced, if they are replaced.  All rate2 values should be
replaced and checked by setrates before a simulation is run.  rpar is the reversible
parameter for the potential reactivity of the products, and can take on any of several
meanings, where its type is stored in rpart.  See the discussion above for a list of
the reversible types and parameters, as well as how they are used.

Following are some code fragments for traversing a reaction structure of arbitrary
order.  The former fragment walks through the reactions of all reactants and
identifies the reaction number for each; the latter one walks through the reactions
and identifies the molecule templates for each. To simplify them, the variables
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order, maxident, nrxn, table, total, rate, nprod, and prod have been defined to be
equal to the respective elements of a reaction structure or simulation structure.

ni2o=intpower(maxident,order);
for(i=0;i<ni2o;i++)

for(j=0;j<nrxn[i];j++)
r=table[i][j];

for(r=0;r<total;r++)
for(p=0;p<nprod[r];p++)

mptr=prod[r][p];

rxnptr rxnalloc(int order,int maxident,int total);
rxnalloc allocates and initializes a reaction structure, leaving it fully set up but with
zero reactions.  It can be used as is, but it won’t do anything until reactions are
added.  order and total need to be at least 0 and maxident needs to be at least 1.

void rxnfree(rxnptr rxn,int maxident);
rxnfree frees a reaction structure for any order reaction.

int loadrxn(simptr sim,FILE *fptr,int *lctrptr,char *erstr);
loadrxn loads a reaction structure from an already opened disk file pointed to with
fptr.  lctrptr is a pointer to the line counter, which is updated each time a line is
read.  If successful, it returns 0 and the reaction is added to sim.  Otherwise it
returns the updated line counter along with an error message.  If a reaction structure
of the same order has already been set up, this function can use it and add more
reactions to it.  It can also allocate and set up a new structure, if needed.  If this runs
successfully, the complete reaction structure is set up, with the exception of rate2
and the position vectors of the template molecules, which are all set to 0’s (unless
the product parameter type is ‘o’ or ‘f’, in which case they are set up).  If the
routine fails, the reaction structure is freed.

void rxnoutput(simptr sim,int order);
rxnoutput displays the complete contents of a reaction structure for order order.  It
also does some other calculations, such as the probability of geminate reactions for
the products and the diffusion and activation limited rate constants.

The following routines work primarily with reaction structures and are intended to
be run during program initiallization, although after most of the reaction structures have
been set up.  They convert mass action reaction rates to microscopic simulation
parameters and vice versa.

int findreverserxn(simptr sim,int i1,int i2,int r,int *optr,int *rptr) {
findreverserxn inputs the reaction defined by reactants i1 and/or i2 and reaction
number r and looks to see if there is a reverse reaction.  If both i1 and i2 are 0, then
the forward reaction is zeroth order and there is no direct reverse reaction.  If either
i1 or i2 is 0, the forward reaction is first order, and if neither reactant is 0, the
forward reaction is second order.  If there is no reaction number r, an error code of
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–1 is returned.  If there is a direct reverse reaction, meaning the products of the
input reaction are themselves able to react to form identities i1 and i2 (or just one
of them if the input reaction is first order), then the function returns 1 and the order
and reaction number of the reverse reaction are pointed to by optr and rptr.  If
there is no direct reverse reaction, but the products of the input reaction are still able
to react, the function returns 2 and optr and rptr point to the first listed
continuation reaction.  If the products do not react, the function returns 0 (this also
includes the situation where the products of the input reaction are A and B and there
is no A+B reaction, although A and/or B can undergo unimolecular reactions, as
well as all situations in which there are three or more products of a forward
reaction).  Either or both of optr and rptr are allowed to be sent in as NULL values if
the respective pieces of output information are not of interest.

int setrates(simptr sim,int order);
setrates is used to convert the requested reaction rates to values that are useful for
the simulation routines.  Values in the rate element are read and values are written
to rate2.  If a rate element is less than zero, it is assumed to have been unassigned
and is skipped; in this case, the respective value for rate2 is not modified.  For
zeroth order reactions, rate2 is the expectation number of molecules that should be
produced in the entire simulation volume during one time step, which is
rate*dt*volume.  For first order reactions, rate2 is the probability of a unimolecular
reaction occuring for an individual reactant molecule during one time step, which is
rate/sum*[1–exp(–sum*dt)], where sum is the sum of the defined rate values for all
unimolecular reactions of the reactant.  For second order reactions, rate2 is the
squared binding radius of the reactants, found from bindingradius.  In this case, the
reverse parameter is accounted for in the reaction rate calculation if there is a direct
reverse reaction and if it is appropriate (see the discussion of “Binding and
unbinding radii,” above and the description for findreverserxn).  This routine also
sets the lists member of reaction structures.  The return value of the function is –1
for correct operation.  If errors occur, which is only possible for illegal inputs
(return value of 0) or bimolecular calculations, the reaction number where the error
was encountered is returned.  Other than illegal inputs, the only possible errors arise
from a diffusion constant of 0 for both reactants, or a directly reversible reaction
that has an undeclared reversible type.

int setproducts(simptr sim,int order,char *erstr);
setproducts is used to set the initial separations between reaction products for all
reactions of order order, based on the corresponding rpart character and rpar
parameter.  This is done by calculating the proper separation and then setting the
first value of the template molecule pos vector to this separation, for all appropriate
templates.  If rpart is either ‘o’ or ‘f’, denoting either randomly oriented offset or
fixed orientation offset, then it is assumed  that the template molecule position has
already been set up; it is not modified again by this routine.  Otherwise, it is
assumed that the template molecule position vectors have all values equal to 0
initially.  If there are illegal inputs, 0 is returned by this routine.  If an error occurs,
the reaction number where the error was encountered is returned and a message is
returned in the string erstr, which should have been allocated to size STRCHAR; if all
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assignments work correctly, –1 is returned and the string is unchanged; and if a
reversible reaction was undeclared, –1 is returned and a warning is returned in the
string, although the program does not need to terminate.  Possible errors include
trying to set product positions for reactions without products, setting relative
positions for products in which reactions have only one product, are irreversible, or
have multiple reverse reactions, or trying to get a geminate binding probability that
is unachievably high due to too long a time step.  See the discussion in the section
called “Binding and unbinding radii” for more details.

double calcrate(simptr sim,int i1,int i2,int r,double *pgemptr);
calcrate calculates the macroscopic rate constant using the microscopic parameters
that have been calculated or that were initially assigned.  All going well, these
results should exactly match those that were requested initially, although this
routine is useful as a check, and for situations where the microscopic values were
input rather than the mass action rate constants.  For bimolecular reactions that are
reversible, the routine calculates rates with accounting for reversibility if the
product parameter is p, x, r, b, or ?, and not otherwise.  A value of –1 is returned if
input parameters are illegal and a value of 0 is returned if the rate2 value for the
indicated reaction is undefined (<0).  If reversibility is accounted for and pgemptr is
not input as NULL, *pgemptr is set to the probability of geminate recombination of
the reactants; otherwise its value is not changed.

The following routines are used during simulation.

int doreact(rxnptr rxn,int r,moleculeptr mptr1,moleculeptr mptr2,simptr sim);
doreact executes a reaction that has already been determined to have happened.
rxn is the reaction, r is the reaction number and mptr1 and mptr2 are the reactants,
where mptr2 is ignored for unimolecular reactions, and both are ignored for zeroth
order reactions.  Reactants are killed, but left in the live lists.  Any products are
created on the dead list, for transfer to the live list by the molsort routine.
Molecules that are created are put at the reaction position, which is the average
position of the reactants weighted by the inverse of their diffusion constants, plus an
offset from the product definition.  The cluster of products is typically rotated to a
random orientation.  If the displacement was set to all 0’s (recommended for non-
reacting products), the routine is fairly fast, putting all products at the reaction
position.  If the rpart character is ‘f’, the orientation is fixed and there is no
rotation.  Otherwise, a non-zero displacement results in the choosing of random
angles and vector rotations.  If the system has more than three dimensions, only the
first three are randomly oriented, while higher dimensions just add the displacement
to the reaction position.  The function returns 0 for successful operation and 1 if
more molecules are required than were initially allocated.  This function lists the
correct box in the box element for each product molecule, but does not add the
product molecules the molecule list of the box.

int zeroreact(simptr sim);
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zeroreact figures out how many molecules to create for each zeroth order reaction
and then tells doreact to create them.  It returns the number of molecules created, or
–1 if not enough molecules were allocated initially.

int unireact(simptr sim);
unireact determines whether unimolecular reactions occured, considering both live
lists.  Reactions that do occur are sent to doreact to process them.  The function
returns the number of reactions that occured during that time step, or –1 if not
enough molecules were allocated initially.

int bireact(simptr sim,int neigh);
bireact determines whether bimolecular reaction occured, sending ones that do
occur to doreact.  neigh tells the routine whether to consider only reactions between
neighboring boxes (neigh=1) or only reactions within a box (neigh=0).  The former
are relatively slow and so can be ignored for qualitative simulations by choosing a
lower simulation accuracy value.  In cases where walls are periodic, it is possible to
have reactions over the system walls.  The function returns the number of reactions
that occured during that time step, or –1 is not enough molecules were allocated
initially.

3.4 Surfaces

Surfaces are organized with a surface superstructure that contains not much more
than just a list of surfaces and their names.  Each of these surfaces, defined with a surface
structure, has various properties that apply to the whole surface, such as its color on the
front and back faces, how it is drawn, and how it interacts with diffusing molecules.  A
surface structure also includes lists of panels that comprise the surface.  These panels
may be rectangular, triangular, spherical, cylindrical, or hemispherical.  A single surface
can contain many panels of multiple shapes.

There is somewhat more to these panel shapes than their names might indicate.
Rectangular panels are designed to be easy to use and to simulate efficiently, but are also
limited.  They are always perpendicular to an axis and have edges that are parallel to
other axes.  They are defined for all dimensions.  Triangular panels are much more
versatile but harder to use.  The winding rule is that the front side has counter-clockwise
winding, meaning that they obey the right-hand rule for winding.  In 2-D, the front side is
the right side of the line, when travelling in the sequence of listed points.

The table below lists the types of panels and key aspects of how they are stored
internally.  Each panel shape is described by either a character, such as ‘r’ for rectangle,
or a number, such as 0 for rectangle.  These descriptions, typically given with the
variables pshape or ps, respectively, are in complete correspondence; translations from
character to number can be done with the function pshape2ps.  Panel locations and sizes,
plus some drawing information, are given with sets of dim-dimensional points.  There are
npts points for a panel, listed below, where npts depends on both the panel shape and the
system dimensionality; npts can also be gotten from pshape2ps.  Additionally, each panel
has a dim-dimensional front vector, which contains information about the direction that
the panel faces.  In some cases, such as for triangles, this is the normal vector to the
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surface and is redundant with the information in the points.  In others, it contains
additional information.  For example, for spheres, only one element of front is used, and
it is used to tell if the front of the panel is on the inside or outside of the sphere, which
cannot be known from just the list of points.  In the table below, p is used for point, and f
is used for front.

                        1D                                       2D                                          3D                  
rectangles (‘r’), ps = 0

npts = 1 npts = 2 npts = 4
p[0][0] = location p[0][0…1] = start p[0…3][0…2]

p[1][0…1] = end = corners
parallel to an axis parallel to an axis
front is on right front has CCW winding

f[0] = ±1 f[0] = ±1 f[0] = ±1
(+ for facing +0) (+ for facing +axis) (+ for facing +axis)

f[1] = 0 (perp. axis) f[1] = perp. axis (0,1) f[1] = perp. axis (0,1,2)
f[2] = undefined f[2] = parallel axis f[2] = axis parallel

to edge from point 0 to point 1
-----------------------------------------------------------------------------------------------
triangles (‘t’), ps = 1

npts = 1 npts = 2 npts = 3
p[0][0] = location p[0][0…1] = start p[0…2][0…2]

p[1][0…1] = end = corners
f[0] = ±1 front is on right front has CCW winding

(+1 for facing +0) f[0…1] = normal vect. f[0…2] = normal vect.
-----------------------------------------------------------------------------------------------
spheres (‘s’), ps = 2

npts = 2 npts = 2 npts = 2
p[0][0] = center p[0][0…1] = center p[0][0…2] = center
p[1][0] = radius p[1][0] = radius p[1][0] = radius

p[1][1] = slices p[1][1] = slices
p[1][2] = stacks

f[0] = ±1 f[0] = ±1 f[0] = ±1
(+ for front outside) (+ for front outside) (+ for front outside)
f[1…2] = undefined f[1…2] = undefined f[1…2] = undefined

-----------------------------------------------------------------------------------------------
cylinders (‘c’), ps = 3

npts = 3 npts = 3
p[0][0…1] = start center p[0][0…2] = start center

not allowed p[1][0…1] = stop center p[1][0…2] = stop center
p[2][0] = radius p[2][0] = radius

p[2][1] = slices
f[0…1] = norm. right vect. p[2][2] = stacks

f[2] = ±1 f[0] = ±1
(+ for front outside) (+ for front outside)

f[1…2] = undefined



52

-----------------------------------------------------------------------------------------------
hemispheres (‘h’), ps = 4

npts = 3 npts = 3
p[0][0…1] = center p[0][0…2] = center

not allowed p[1][0] = radius p[1][0] = radius
p[1][1] = slices p[1][1] = slices

p[1][2] = stacks
p[2][0…1] = outward vect. p[2][0…2] = outward vect.

f[0] = ±1 f[0] = ±1
(+ for front outside) (+ for front outside)
f[1…2] = undefined f[1…2] = undefined

typedef struct panelstruct {
char pshape; // panel shape: (r)ect, (t)riangle, (s)phere
struct surfacestruct *srf; // surface that owns this panel
int npts; // number of defining points
double **point; // defining points, [number][dimension]
double front[3]; // front parameters, which depend on the shape
} *panelptr;

pshape is character ‘r’, ‘t’, ‘s’, ‘c’, or ‘h’ for a rectangular, triangular, spherical,
cylindrical, or hemispherical panel, respectively.  As described in the user
documentation, these names only pertain to 3D simulations, but most of them have
shape analogs in 1D and 2D.  srf is a pointer to the surface that owns this panel; it
would be called a surfaceptr, except that a surfaceptr isn’t declared until later.
npts is the number of dim-dimensional points that are allocated.  points and front
have meanings that depend on the panel shape and on the dimensionality, described
in the preceding table.

typedef struct surfacestruct {
char *faction; // action for molec. on front [maxident]
char *baction; // action for molecules on back [maxident]
double fcolor[4]; // RGBA color vector for front
double bcolor[4]; // RGBA color vector for back
double edgepts; // thickness of edge for drawing
char fpolymode; // polygon drawing mode for front
char bpolymode; // polygon drawing mode for back
int maxpanel[PSMAX]; // allocated number of panels [ps]
int npanel[PSMAX]; // actual number of panels [ps]
panelptr *panels[PSMAX]; // list of panels [ps][p]
 } *surfaceptr;

faction and baction are the actions that happens to molecules that diffuse into the
front or back face of the surface, respectively, which can be ‘r’ for reflect, ‘a’ for
absorb, or ‘t’ for transparent.  These vectors have maxident elements to account for
each molecule species.  fcolor and bcolor are the colors of the front and back of the
surface in the order: red, green, blue, alpha; each has a value between 0 and 1.
edgepts is the thickness of edges in points for drawing, which applies to all drawing
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situations except for 3D and when the surface faces are rendered.  fpolymode and
bpolymode are characters that describe how the surface front and back should be
drawn: ‘v’ for vertices only, ‘e’ for edges only, or ‘f’ for faces only.  Not all options
apply to 1D and 2D simulations.  maxpanel and npanel are the number of panels that
are allocated or used, respectively, for each of the panel shapes.  panels are lists of
pointers to the panels for the possible shapes.  Note that every panel within a
surface has the same drawing scheme and the same interaction with molecules.

typedef struct surfacesuperstruct {
int maxsrf; // maximum number of surfaces
int nsrf; // number of surfaces
char **snames; // surface names [s]
surfaceptr *srflist; // list of surfaces [s]
int drctonly; // 1 for only detect direct collisions
} *surfacessptr;

maxsrf and nsrf are the number of surfaces that are allocated and defined,
respectively.  snames is a list of names for the surfaces.  srflist is the list of
pointers to surfaces.

It was surprisingly difficult to get the surfaces to work well enough that diffusing
molecules did not leak through reflective panels on rare occasion.  Because of that, the
code is written unusually carefully, and in ways that are not necessarily obvious, so be
careful when modifying it.  For example, round-off error differences between two
different but mathematically identical ways of calculating a molecule distance from a
surface can easily place the molecule on the wrong side of a surface panel.

If a molecule is exactly at a panel, it is considered to be at the back side of the
panel.  Initially, I defined direct collisions as collisions in which the straight line between
two points crosses a surface, whereas an indirect collision is one in which the straight line
does not cross a surface but it was determined with a random number that the Brownian
motion trajectory did contact the surface.  Indirect collisions proved to slow down the
program significantly, greatly complicate the code development, and provided minimal
accuracy improvements, so I got rid of them.  Now, only direct collisions are detected
and dealt with.

Currently, surface actions are reflect (‘r’), absorb (‘a’), transparent (‘t’), or periodic
(‘p’).  In the future, it will also be possible to combine the first three in various ways such
that a surface can be semi-permeable and/or weakly adsorbing.  Periodic surfaces are
designed solely to provide periodic outside boundaries of the system.

int pshape2ps(char pshape,int dim,int *nptsptr);
Converts panel shape character in pshape to the panel shape number, which is
returned.  Also, if nptsptr is not sent in a NULL, the number of points that are used
for this panel shape and for the dimensionality that is entered in dim is returned in it.
If pshape is not a recognized character or if the panel shape is not supported for this
dimensionality, -1 is returned and nptsptr is set to point to a 0.
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int panelsalloc(surfaceptr srf,int dim,int maxpanel,char pshape);
Allocates maxpanels of shape pshape for the surface srf.  The srf element of the
panels are set to srf.  In srf, the correct maxpanel entry is set to maxpanel, the
npanel entry is set to 0, and the proper list of panels are allocated and cleared (srf
can also be sent in as NULL, in which case, these are clearly not done).  All points are
set to all zeros.  The function returns 1 for success and 0 for failure to allocate
memory.

void panelfree(panelptr pnl);
Frees a single panel and all of its substructures (but not srf, because that’s a
reference and is not owned by the panel).  This is called by surfacefree and so
should not need to be called externally.

surfaceptr surfacealloc(int maxident);
Allocates a surface structure, and sets all elements to initial values.  maxident is the
maximum number of molecular identities, which is used for allocating faction and
baction.  Colors are set to all 0’s (black), but with alpha values of 1 (opaque);
polygon modes are set to ‘f’ for face; edgepoints is set to 1; faction and baction
are set to ‘r’ for reflective.  No panels are allocated.  This is called by
surfacessalloc and so should not need to be called externally.

void surfacefree(surfaceptr srf);
Frees a surface, including all substructures and panels in it.  This is called by
surfacessfree and so should not need to be called externally.

surfacessptr surfacessalloc(int maxsurface,int maxident);
Allocates a surface superstructure for maxsurface surfaces, as well as all of the
surfaces.  Each name is allocated to an empty string of STRCHAR (256) characters.

void surfacessfree(surfacessptr srfss);
Frees a surface superstructure pointed to by srfss, and all contents in it, including
all of the surfaces and all of their panels.

int loadsurface(simptr sim,FILE *fptr,int *lctrptr,char *erstr);
loadsurface loads a surface from an already opened disk file pointed to with fptr.
lctrptr is a pointer to the line counter, which is updated each time a line is read.  If
successful, it returns 0 and the surface is added to the surface superstructure in sim,
which should have been already allocated.  Otherwise it returns the updated line
counter along with an error message.  If a surface with the same name (entered by
the user) already exists, this function can add more panels to it.  It can also allocate
and set up a new surface.  If this runs successfully, the complete surface structure is
set up, with the exception of box issues.  If the routine fails, any new surface
structure is freed.

void surfaceoutput(simptr sim);
Prints out information about all surfaces, including the surface superstructure, each
surface, and panels in the surface.
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char panelside(double* pt,panelptr pnl,int dim);
Returns the side of the panel pnl that point pt is on, which is either a ‘f’ or a ‘b’ for
front or back, respectively.  ‘b’ is returned if the point is exactly at the panel.  The
value returned by this function defines the side that pt is on, so should either be
called or exactly copied for other functions that care.

int lineXpanel(double *pt1,double *pt2,panelptr pnl,char *faceptr,double
*crsspt,double *cross,int dim);
This determines if the line from pt1 to pt2 crosses the panel pnl, using a dim
dimensional system.  The panel includes all of its edges.  If it crosses, 1 is returned,
the face that is on the pt1 side of the panel is returned in faceptr, crsspt is set to
the coordinates of the crossing point, and cross points to the crossing position on
the line, which is a number between 0 and 1, inclusive.  If it does not cross, 0 is
returned and the other values are undefined.  Crossing is handled very carefully
such that the exact locations of pt1 and pt2, using tests that are identical to those in
panelside, are used to determine which sides of the panel they are on.  While
crsspt will be returned with coordinates that are very close to the panel location, it
may not be precisely at the panel, and there is no certainty about which side of the
panel it will be on; if it matters, fix it with fixpt2panel.

If the line crosses the panel more than once, which can happen for spherical or other
curved panels, the smaller of the two crossing points is returned.  For sphere and
cylinder, 0 is returned if either both points are inside or both points are outside and
the line segment does not cross the object twice.

Each portion of this routine does the same things, and usually in the same order.
First, the potential intersection face is determined, then the crossing value, then the
crossing point, and finally it finds if intersection actually happened.  For
hemispheres and cylinders, if intersection does not happen for the first of two
possible crossing points, it is then checked for the second point.

int rxnXsurface(simptr sim,moleculeptr mptr1,moleculeptr mptr2);
Returns 1 if a potential bimolecular reaction between mptr1 and mptr2 is across a
non-transparent surface, and so cannot actually happen.  Returns 0 if a reaction is
allowed.  Using the diffusion coefficients of the two molecules, this calculates the
reaction location and then determines which molecule needs to diffuse across a
surface to get to that location.  If that molecule can diffuse across the surface, then
the reaction is allowed, and not otherwise.

void fixpt2panel(double *pt,panelptr pnl,int dim,char face);
Fixes the point pt onto the face face of panel pnl.  Send in face equal to ‘0’ if pt
should be moved as close as possible to pnl.  If it should also be on the front or
back face of the panel, as determined by panelside, then send in face equal to ‘f’ or
‘b’, respectively.  This function first moves pt to the panel in a direction normal to
the local panel surface and then nudges pt as required to get it to the proper side.
This only considers the infinite plane of the panel, while ignoring its boundaries
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(similarly, hemispheres are considered to be identical to spheres and cylinders are
considered to be infinitely long).

void surfacereflect(moleculeptr mptr,panelptr pnl,double *crsspt,char face,int
dim);
This bounces the molecule mptr off of the face side of panel pnl.  Elastic collisions
are performed, which should work properly for any shape panel and any
dimensionality.  For flat panels, elastic collisions also apply to Brownian motion.  It
is assumed that the molecule travels from some point (not given to this function,
and irrelevent) to mptr->pos, via a collision with the panel at location crsspt, where
crsspt is either exactly at the panel or is slightly on impact side of the panel.  The
molecule pos element is set to the new, reflected, position, which will always be on
the face side of the panel.

int dosurfinteract(moleculeptr mptr,panelptr pnl,char face,double *crsspt,int
dim);
Performs interaction between molecule and surface for an interaction that is known
to have happened.  If the surface is reflective and it is found that crsspt is not on
the same side of the panel as via, then crsspt is moved slightly so that it is on the
same side as via.  This calls surfacereflect if needed.  It also absorbs a molecule if
needed.  Returns 1 if the molecule does not need additional trajectory tracking (e.g.
it’s absorbed) and 0 if it might need additional tracking (e.g. it’s reflected).

int checksurfaces(simptr sim,int ll,int reborn);
Takes care of interactions between molecules and surfaces.  Molecules in live list ll
are considered; if reborn is 1, only the reborn molecules of list ll are considered.
This transmits, reflects, or absorbs molecules, as needed, based on the panel
positions and information in the molecule posx and pos elements.  Absorbed
molecules are killed but left in the live list with an identity of zero, for later sorting.
Reflected molecules are bounced and their posx values represent the location of
their last bouncing point.  This function does not rely on molecules being properly
assigned to boxes, and nor does it assign molecules to boxes afterwards.  However,
it does rely on the panels being properly assigned to boxes.  The total number of
surface interactions is returned.

3.5 Boxes

The simulation volume is exactly divided into an array of identical virtual boxes.
These allow the simulation to run efficiently because only potential reactions between
molecules that are known to be physically close need to be checked, and the same for
molecule-surface interactions.  In principle, the boxes are fairly simple.  In practice
though, they complicate the overall code quite significantly.

Each box has its own box structure.  These are collected in a box superstructure.

typedef struct boxstruct {
  int *indx; dim dimensional index of the box
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  int nneigh; number of neighbors in list
  int midneigh; logical middle of neighbor list
  struct boxstruct **neigh; all box neighbors, using sim. accuracy
  int *wpneigh; wrapping code of neighbors in list
  int nwall; number of walls in box
  wallptr *wlist; list of walls that cross the box
  int npanel; number of surface panels in box
  panelptr *panel; list of panels in box
  int maxmol[2]; allocated size of live lists
  int nmol[2]; number of molecules in live lists
  moleculeptr *mol[2]; } *boxptr; lists of live molecules in the box

boxstruct (declared in smollib.h) is a structure for each of the virtual boxes that
partition space.  Each box has a list of its neighbors, in neigh, as well as a little
information about them.  This list extends from 0 to nneigh-1.  From 0 to midneigh-
1 are those neighbors that logically precede the box, meaning that they are above or
to the left, whereas those from midneigh to nneigh-1 logically follow the box.  If
there are no periodic boundary conditions, the logical order is the same as the
address order; however, this is not neccesarily true with the inclusion of wrap-
around effects.  In wpneigh is a code for each neighbor that describes in what way it
is a neighbor: 0 means that it’s a normal neighbor with no edge wrap-around;
otherwise pairs of bits are associated with each dimension (low order bits for low
dimension), with the bits equal to 00 for no wrapping in that dimension, 01 for
wrapping towards the low side, and 10 for wrapping towards the high side.  This
might be clearer in the Zn.c documentation.  The neighbors that are listed depend
on the requested simulation accuracy:

accuracy              neighbors      wrap-around
<3 none no
3 to <6 nearest no
6 to <9 nearest yes
>9 all yes

Boxes also have lists of mobile molecules (mol[0], allocted to size maxmol[0], and
filled from 0 to nmol[0]-1), immobile molecules (mol[1], etc.) molecules, and walls
(wlist, allocated and filled with nwall pointers) within them.  While the lists are
owned by the box, the members of the lists are simply references, rather than
implications of ownership.  The same, of course, is true of the neighbor list,
although the box owns the wpneigh list.  If wall or neighbor lists are empty, the list
is left as NULL, whereas the molecule list always has a few spaces in it.

typedef struct boxsuperstruct {
  double mpbox; requested number of molecules per box
  double boxsize; requested box width
  int nbox; total number of boxes
  int *side; number of boxes on each side of space
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  double *min; position vector for low corner of space
  double *size; length of each side of a box
  boxptr *blist; } *boxssptr; actual array of boxes

boxsuperstruct (declared in smollib.h) expresses the arrangement of virtual boxes
in space, and owns the list of those boxes and the boxes.  Either mpbox or boxsize
are used and not both.  Boxes are arranged in a rectanguloid grid and exactly cover
all space inside the walls.  The structure of the boxes in space is the same as that of
a dim rank tensor, allowing tensor indexing routines to be used to convert between
box addresses and indicies.  The box index along the d’th dimension of a point with
position x[d] is

indx[d]=(x[d]-min[d])/size[d];

where integer arithmetic takes care of the truncation.  Convering from box index to
address is easy with the tensor routine in Zn.c, or can also be calculated quickly
with the following code fragment, which outputs the box number as b,

for(b=0,d=0;d<dim;d++)   b=side[d]*b+indx[d];

Converting the box number to the indicies can also be done, but the Zn.c routine is
easiest for this.

boxptr boxalloc(int dim);
boxalloc allocates and minimally initiallizes a new boxstruct.  The only list
allocated is indx, which is set to 0’s.

void boxfree(boxptr bptr);
boxfree frees the box and its lists, although not the structures pointed to by the lists.

boxptr *boxesalloc(int dim,int nbox);
boxesalloc allocates and initializes an array of n boxes, including the boxes.  Again,
initiallization is minimal, with only the indx array of the boxes allocated, which is
set to 0’s.

void boxesfree(boxptr *blist,int nbox);
boxesfree frees an array of boxes, including the boxes.

boxssptr boxssalloc(int dim);
boxssalloc allocates and initializes a superstructure of boxes, inculding arrays for
the side, min, and size members, although the boxes are not added to the structure;
i.e. blist is set to NULL and nbox is 0.  Initial values for side and size members are
all set to 1, min values are set to 0, and mpbox is set to 5; all of these values are
typically changed later.

void boxssfree(boxssptr boxs);
boxssfree frees a box superstructure, including the boxes.
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void boxoutput(int dim,boxssptr boxs);
boxoutput simply lists every virtual box, along with all the details about it, where
these details are the index, the number of neighbors, the neighbor mid-point, the
number of maximum number of molecules, what the neighbors are, and what the
wrapping codes are.  As the program is currently written, this function is never
called, although it could be to look for errors in box setting up.

void boxssoutput(simptr sim);
boxssoutput displays statistics about the box superstructure, including total number
of boxes, number on each side, dimensions, and the minimium position.  It also
prints out the requested and actual numbers of molecules per box.

int expandbox(boxptr bptr,int n,int ll);
expandbox is called if it turns out that a box was not allocated with enough space for
molecules.  bptr is a pointer to a box that needs expanding, n is the number of
additional molecule spaces to add, and ll is the live list to expand.  If n is negative,
the box is shrunk and any molecule pointers that no longer fit are simply left out.
The book keeping elements of the box are updated.  The function returns 0 if it was
successful and 1 if there was not enough memory for the request.

boxptr pos2box(simptr sim,double *pos);
pos2box returns a pointer to the box that includes the position given in pos, which is
a dim size vector.  If the position is outside the simulation volume, a pointer to the
nearest box is returned.  This routine assumes that the entire box superstructure is
set up.

void box2pos(simptr sim,boxptr bptr,double *pos);
Given a pointer to a box in bptr, this returns the coordinate of the low corner of the
box in pos, which needs to be pre-allocated to the system dimensionality.  This
requires that the min and size portions of the box superstructure have been already
set up.  To get the other box corners, add the size values that are in the box
superstructure.

boxptr line2nextbox(simptr sim,double *pt1,double *pt2,boxptr bptr);
Given a line segment which is defined by the starting point pt1 and the ending point
pt2, and which is known to intersect the virtual box pointed to by bptr, this returns
a pointer to the next box along the line segment.  If the current box is also the final
one, NULL is returned.  NULL is also returned if the next box is outside of the region
that is covered by virtual boxes.

int panelinbox(simptr sim,panelptr pnl,boxptr bptr);
Determines if any or all of the panel pnl is in the box bptr and returns 1 if so and 0
if not.  For most panel shapes, this is sufficiently complicated that this function just
calls other functions in the library file Geometry.c.

int setupboxes(simptr sim);
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setupboxes sets up a superstructure of boxes, and puts things in the boxes, including
wall and molecule references.  It requires a simulation structure with most things set
up, but not box stuff; it’s designed for the structure after it’s returned from
loadsimul.  It sets up the box superstructure, then adds indicies to each box, then
adds the box neighbor list along with neighbor parameters, then adds wall
references to each box, and finally creates molecule lists for each box and sets both
the box and molecule references to point to each other.  The molecule list is
6+3√nmol higher than nmol to allow for more molecules; the extra pointers are all set
to NULL.  The function returns 0 for successful operation and 1 if it was unable to
allocate sufficient memory.  At the end, all simulation parameters having to do with
boxes are set up.  However, some lists may still be NULL, if they are empty, where
these are bptr->neigh, bptr->wpneigh, and bptr->wlist.  Of particular note is that
bptr->wpneigh is NULL if no neighbors are wrap-around ones, for whatever reason.

int assignmolecs(simptr sim,int ll);
assignmolecs puts molecules in boxes by overwriting the lists of molecules that are
in each box with molecules from mols.  It only assigns the live list number ll.
Molecules that are outside the set of boxes are assigned to the nearest box.  If more
molecules belong in a box than actually fit, 5 more spaces are allocated using
expandbox.  The function returns 0 unless memory could not be allocated by
expandbox, in which case only some of the molecules are assigned and it returns 1.

int reassignmolecs(simptr sim,int ll,int reborn);
Updates the information about which molecule is in which box, for those molecules
that are in master list ll (0 for diffusing, 1 for not).  If reborn is 0, all molecules in
list ll are updated; otherwise, only the reborn ones are.  This assumes that all
molecules that are being checked were in a box, meaning that the box element of the
molecule structure listed a box and that the mol list of that box listed the molecule.
Molecules are arranged in boxes according to the location of the pos element of the
molecules.  Molecules outside the set of boxes are assigned to the nearest box.  If
more molecules belong in a box than actually fit, the number of spaces is doubled
using expandbox.  The function returns 0 unless memory could not be allocated by
expandbox, in which case it fails and returns 1.

3.6 Simulation structure

At the highest level of the structures is the simulation structure.  This is a large
framework that contains information about the simulation that is to be run as well as
pointers to each of the component structures and superstructures.  It also contains some
scratch space for functions to use as they wish.

typedef struct simstruct {
  unsigned int randseed; random number generator seed.
  int dim; dimensionality of space.
  int maxident; maximum number of identities
  int nident; number of identities, including empty mols
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  char **name; names of molecules
  int graphics; graphics: 0=none, 1=opengl, 2=good opengl
  int graphicit; number of time steps per graphics update
  int tiffit; number of time steps per tiff save
  double framepts; thickness of frame for graphics
  double gridpts; thickness of virtual box grid for graphics
  double framecolor[4]; frame color
  double backcolor[4]; background color
  double accur; accuracy, on scale from 0 to 10
  double time; current time in simulation
  double tmin; simulation start time
  double tmax; simulation end time
  double dt; simulation time step
  rxnptr rxn[3]; list of reactions
  molssptr mols; molecule superstructure
  wallptr *wlist; list of walls
  surfacessptr srfss; surface superstructure
  boxssptr boxs; box superstructure
  cmdssptr cmds; command superstructure
  double *v1,*v2,*v3; scratch space, each size dim or maxident
  double *m1,*m2,*m3; scratch space, each size dim x dim
  int *z1,*z2,*z3;  } *simptr; scratch space, each size dim or maxident

simstruct (declared in smollib.h) contains and owns all information that defines
the simulation conditions, the current state of the simulation, and all other
simulation parameters.  The scratch space is allocated when the structure is
allocated and is for the use of any routine that uses a simulation structure.  The v
and z scratch space vectors have dimensions that are the larger of dim or maxident.

simptr simalloc(int dim,int maxident,char *root);
simalloc allocates a simulation structure.  The difc and difm lists are allocated and
initialized.  Default diffusion matrics are all 0’s, except with –1 in the first element.
Walls are allocated and inialized.  The box superstructure is allocated and
initialized, although the list of boxes is left as NULL.  The molecule superstructure is
left as NULL.  The commands superstructure is allocated, but the queue of commands
and the output file lists are left as NULLs.  root is required for the command
superstructure.  simalloc also sets the random number generator seed.

void simfree(simptr sim);
simfree frees a simulation strucutre, including every part of everything in it.

Initiallization procedures are meant to be called once at the beginning of the
program to allocate and set up the necessary structures.  These routines call memory
allocation procedures as needed.  setupstructs is the only one of these routines that
should ever need to be called externally, since it calls the other functions as needed.

int loadsimul(simptr *smptr,char *fileroot,char *filename,char *erstr);
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loadsimul loads all simulation parameters from a configuration file, using a format
described above.  fileroot is sent in as the root of the filename, including all
colons, slashes, or backslashes; if the configuration file is in the same directory as
Smoldyn, fileroot should be an empty string.  filename is sent in as just the file
name and any extension.  erstr is sent in as an empty string of size STRCHAR and is
returned with an error message if an error occurs.  smptr is sent in as a pointer to the
variable that will point to the simstruct; it is returned pointing to a pointer to an
initiallized simstruct.  This routine calls loadrxn to load in any reactions and
loadsurface to load any surfaces.  The following things are set up after this routine
is completed: all molecule elements except box; all molecule superstructure
elements; all wall elements; box superstructure element mpbox, but no other
elements; no boxes are allocated or set up; all reaction structure elements except
rate2 and the product template position vectors (pos in each product); the command
superstructure, including all of its elements; and all simulation structure elements
except for sub-elements that have already been listed.  All new molecules are left in
the dead list for sorting later.  If the configuration file loads successfully, the routine
returns 0.  If the file could not be found, it returns 10 and an error message.  If an
error was caught during file loading, the return value is 10 plus the line number of
the file with an error, along with an error message.  If there is an error, all structures
are freed automatically.

int setupstructs(char *root,char *name,simptr *smptr,int vb);
setupstructs sets up and loads values for all the structures as well as global
variables.  This routine calls the other initialization routines, so they do not have to
be called from elsewhere.  Other minor things are set up here, including setting the
lookup table for normally distributed random numbers.  It also displays the status to
stdout and calls output routines for each structure, allowing verification of the
initiallization.  Send in root and name with strings for the path and name of the input
file.  vb is a flag for verbose operation, 1 for verbose and 0 for quiet.  It returns 0 for
correct operation and 1 for an error.  If it succeeds, smptr is returned pointing to a
fully set up simulation structure.  Otherwise, smptr is set to NULL and an error
messages is displayed on stderr.

void simoutput(simptr sim);
simoutput prints out the overall simulation parameters, including simulation time
information, graphics information, the number of dimensions, what the molecule
types are, the output files, and the accuracy.

void checkparams(simptr sim);
checkparams checks that the simulation parameters, including parameters of sub-
structures, have reasonable values.  If values seem to be too small or too large, a
warning is displayed to the standard output, although this does not affect
continuation of the program.

4.  Functions in smollib2.c (command interpreter routines)
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4.1 Externally accessible function

Command strings are not parsed, checked, or even looked at during simulation
initiallization.  Instead, they are run by the command interpreter during the simulation.
Command routines are given complete freedom to look at and/or modify any part of a
simulation structure or sub-structure.  This, of course, also gives commands the ability to
crash the computer program, so they need to be written carefully to prevent this.  Every
command is sent a pointer to the simulation structure in sim, as well as a string of
command parameters in line2.  See below for how to add a new command.

int docommand(void *cmdfnarg,cmdptr cmd,char *line);
docommand is given the simulation structure in sim, the command to be executed in
cmd, and a line of text which includes the entire command string.  It parses the line
of text only into the first word, which specifies which command is to be run, and
into the rest of the line, which contains the command parameters.  The rest of the
line is then sent to the appropriate command routine as line2.  The return value of
the command that was called is passed back to the main program from docommand.
These routines return 0 for normal operation, 1 for an error that does not require
simulation termination, 2 for an error that requires simulation termination, and 3 for
a time step termination but no simulation termination (for pausing).

4.2 Individual command functions

int cmdstop(simptr sim,cmdptr cmd,char *line2);
int cmdpause(simptr sim,cmdptr cmd,char *line2);
int cmdoverwrite(simptr sim,cmdptr cmd,char *line2);
int cmdincrementfile(simptr sim,cmdptr cmd,char *line2);
int cmdifno(simptr sim,cmdptr cmd,char *line2);
int cmdifless(simptr sim,cmdptr cmd,char *line2);
int cmdifmore(simptr sim,cmdptr cmd,char *line2);
int cmdpointsource(simptr sim,cmdptr cmd,char *line2);
int cmdkillmol(simptr sim,cmdptr cmd,char *line2);
int cmdkillmolinsphere(simptr sim,cmdptr cmd,char *line2);
int cmdequilmol(simptr sim,cmdptr cmd,char *line2);
int cmdreplacexyzmol(simptr sim,cmdptr cmd,char *line2);
int cmdmodulatemol(simptr sim,cmdptr cmd,char *line2);
int cmdreact1(simptr sim,cmdptr cmd,char *line2);
int cmdmolcount(simptr sim,cmdptr cmd,char *line2);
int cmdlistmols(simptr sim,cmdptr cmd,char *line2);
int cmdlistmols2(simptr sim,cmdptr cmd,char *line2);
int cmdlistmols3(simptr sim,cmdptr cmd,char *line2);
int cmdmolpos(simptr sim,cmdptr cmd,char *line2);
int cmdmolmoments(simptr sim,cmdptr cmd,char *line2);
int cmdsavesim(simptr sim,cmdptr cmd,char *line2);
int cmdexcludebox(simptr sim,cmdptr cmd,char *line2);
int cmdexcludesphere(simptr sim,cmdptr cmd,char *line2);
int cmdincludeecoli(simptr sim,cmdptr cmd,char *line2);
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int insideecoli(double *pos,double *ofst,double rad,double length);
void putinecoli(double *pos,double *ofst,double rad,double length);

int cmdstop(simptr sim,cmdptr cmd,char *line2);
cmdstop returns a value of 2, meaning that the simulation should stop.  Any contents
of line2 are ignored.

int cmdpause(simptr sim,cmdptr cmd,char *line2);
cmdpause causes the simulation to pause until the user tells it to continue.
Continuation is effected by either pressing the space bar, if OpenGL is used for
graphics, or by pressing enter if output is text only.  The return value is 0 for non-
graphics and 3 for graphics.  Any contents of line2 are ignored.

int cmdoverwrite(simptr sim,cmdptr cmd,char *line2);
cmdoverwrite overwrites a prior output file.  See the user manual.

int cmdincrementfile(simptr sim,cmdptr cmd,char *line2);
cmdincrementfile closes a file, increments the name and opens that one for output.
See the user manual.

int cmdifno(simptr sim,cmdptr cmd,char *line2);
cmdifno reads the first word of line2 for a molecule name and then checks the
appropriate simulation live list to see if any molecules of that type exist.  If so, it
does nothing, but returns 0.  If not, it sends the remainder of line2 to docommand to
be run as a new command, and then returns 0.  It returns 1 if the molecule name was
missing or not recognized.

int cmdifless(simptr sim,cmdptr cmd,char *line2);
cmdifless is identical to cmdifno, except that it runs the command in line2 if there
are less than a listed number of a kind of molecules in the approriate live list.

int cmdifmore(simptr sim,cmdptr cmd,char *line2);
cmdifmore is identical to cmdifno except that it runs the command in line2 if there
are more than a listed number of a kind of molecules in the appropriate live list.

int cmdpointsource(simptr sim,cmdptr cmd,char *line2);
cmdpointsource reads line2 for a molecule name, followed by the number of
molecules that should be created, followed by the dim dimensional position for
them.  If all reads well, it creates the new molecules in the system at the approriate
position.  They are added to the dead list and then the lists are sorted.

int cmdkillmol(simptr sim,cmdptr cmd,char *line2);
cmdkillmol reads line2 for a molecule name and then kills all molecules of that
name from the appropriate live list by setting their identities to 0.  The molecule
lists are then sorted.

int cmdkillmolinsphere(simptr sim,cmdptr cmd,char *line2);
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cmdkillmolinsphere reads line2 for a molecule name and a surface name and then
kills all molecules of the given type, that are in spheres of the listed surface, from
the appropriate live list by setting their identities to 0.  The molecule lists are then
sorted.  The molecule name and/or the surface name can be “all”.

int cmdequilmol(simptr sim,cmdptr cmd,char *line2);
cmdequilmol equilibrates a pair of molecular species, allowing the efficient
simulation of rapid reactions.  It reads two molecule names from line2, followed by
a probability value.  Then, it looks for all molecules in the live lists with either of
the two types and replaces them with the second type using the listed probability or
with the first type using 1– the listed probability.

int cmdreplacexyzmol(simptr sim,cmdptr cmd,char *line2);
cmdreplacexyzmol reads the name of a molecule following by a dim dimensional
point in space from line2.  Then, it searches the fixed live list for any molecule that
is exactly at the designated point.  If it encounters one, it is replaced by the listed
molecule, and then the live lists are sorted if appropriate.  This routine stops
searching after one molecule has been found, and so will miss additional molecules
that are at the same point.

int cmdmodulatemol(simptr sim,cmdptr cmd,char *line2);
cmdmodulatemol is identical to cmdequilmol except that the equilibration probability
is not fixed, but is a sinusoidally varying function.  After reading two molecule
names from line2, this routine then reads the cosine wave frequency and phase shift,
then calculates the probability using the function prob=0.5*(1.0-cos(freq*sim-
>time+shift)).

int cmdreact1(simptr sim,cmdptr cmd,char *line2);
cmdreact1 reads line2 for the name of a molecule followed by the name of a
unimolecular reaction.  Then, every one of that type of molecule is caused to
undergo the listed reaction, thus replacing each one by reaction products.
Molecules are sorted at the end.  This might be useful for simulating a pulse of
actinic light, for example.

int cmdsetrateint(simptr sim,cmdptr cmd,char *line2);
This reads line2 for the name of a reaction and the new internal rate constant for it.
The internal rate constant is set to the new value.  Errors can arise from illegal
inputs, such as the reaction not being found or a negative requested internal rate
constant.

int cmdmolcount(simptr sim,cmdptr cmd,char *line2);
cmdmolcount reads the output file name from line2.  Then, to this file, it saves one
line of text listing thecurrent simulation time, followed by the number of each type
of molecule in the system.  This routine does not affect any simulation parameters.

int cmdlistmols(simptr sim,cmdptr cmd,char *line2);
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cmdlistmols reads the output file name from line2.  To this file, it saves a list of
every individual molecule in both live lists of the simulation, along with their
positions.  This routine does not affect any simulation parameters.

int cmdlistmols2(simptr sim,cmdptr cmd,char *line2);
cmdlistmols2 reads the output file name from line2.  To this file, it saves the
number of times this command was invoked using the invoke element of
commands, a list of every individual molecule in both live lists of the simulation,
along with their positions.  This routine does not affect any simulation parameters.
Routine originally written by Karen Lipkow and then rewritten by me.

int cmdlistmols3(simptr sim,cmdptr cmd,char *line2);
cmdlistmols3 reads a molecule name and the output file name from line2.  To this
file, it saves the number of times the command was invoked, the identity of the
molecule specified, and the positions of every molecule of the specified type.  This
routine does not affect any simulation parameters.

int cmdmolpos(simptr sim,cmdptr cmd,char *line2);
cmdmolpos reads a molecule name and then the output file name from line2.  To this
file, it saves one line of text with the positions of each molecule of the listed
identity.  This routine does not affect any simulation parameters.

int cmdmolmoments(simptr sim,cmdptr cmd,char *line2);
cmdmolmoments reads a molecule name and then the output file name from line2.  To
this file, it saves in one line of text: the time and the zeroth, first, and second
moments of the distribution of positions for all molecules of the type listed.  The
zeroth moment is just the number of molecules (of the proper identity); the first
moment is a dim dimensional vector for the mean position; and the second moment
is a dimxdim matrix of variances.  This routine does not affect any simulation
parameters.

int cmdsavesim(simptr sim,cmdptr cmd,char *line2);
cmdsavesim reads the output file name from line2 and then saves the complete state
of the system to this file, as a configuration file.  This output can be run later on to
continue the simulation from the point where it was saved.

int cmdexcludebox(simptr sim,cmdptr cmd,char *line2);
cmdexcludebox allows a region of the simulation volume to be effectively closed off
to molecules.  The box is defined by its low and high corners, which are read from
line2.  Any molecule, of any type, that entered the box during the last time step, as
determined by its pos and posx structure members, is moved back to its previous
position.  This is not the correct behavior for a reflective surface, but is efficient and
expected to be reasonably accurate for most situations.  This routine ought to be
replaced with a proper treatment of surfaces in the main program (rather than with
interpreter commands), but that’s a lot more difficult.

int cmdexcludesphere(simptr sim,cmdptr cmd,char *line2);
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cmdexcludesphere is like cmdexcludebox except that it excludes a sphere rather than
a box.  The sphere is defined by its center and radius, which are read from line2.
Any molecule, of any type, that entered the sphere during the last time step, as
determined by its pos and posx structure members, is moved back to its previous
position.  This is not the correct behavior for a reflective surface, but is efficient and
expected to be reasonably accurate for most situations.

int cmdincludeecoli(simptr sim,cmdptr cmd,char *line2);
cmdincludeecoli is the opposite of the excludebox and excludesphere commands.
Here, molecules are confined to an E. coli shape and are put back inside it if they
leave.  See the user manual for more about it.  Unlike the other rejection method
commands, this one works even if a molecule was in a forbidden region during the
previous time step; in this case, the molecule is moved to the point on the E. coli
surface that is closest.  Because of this difference, this command works reasonably
well even if it is not called at every time step.

void cmdmeansqrdispfree(cmdptr cmd);
A memory freeing routine for memory that is allocated by cmdmeansqrdisp.

int cmdmeansqrdisp(simptr sim,cmdptr cmd,char *line2);
This calculates the mean square displacements of all molecules of the requested
type, based on the difference between their current positions and their positions
when the command was first invoked.

int insideecoli(double *pos,double *ofst,double rad,double length);
This is a short utility routine used by the command cmdincludeecoli.  It returns a 1
if a molecule is inside an E. coli shape and a 0 if not.  pos is the molecule position,
ofst is the physical location of the cell membrane at the center of the low end of the
cell (the cell is assumed to have its long axis along the x-axis), rad is the cell radius
used for both the cylindrical body and the hemispherical ends, and length is the
total cell length, including both hemispherical ends.

void putinecoli(double *pos,double *ofst,double rad,double length);
This is another short utility routine used by the command cmdincludeecoli.  It
moves a molecule from its initial position in pos to the nearest surface of an E. coli
shape.  Parameters are the same as those for insideecoli.

int molinpanels(simptr sim,int ll,int m,int s,char pshape);
This function, which might be better off in the main smollib.c code, is used to test if
molecule number m of live list ll is inside any of the pshape panels of surface
number s.  Only spheres are allowed currently as panel shapes, because neither
rectangles nor trangles can contain molecules.  If s is sent in with a value less than
0, this means that all pshape panels of all surfaces will be checked.

4.3 How to add a new runtime command
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Command interpreter routines are designed to be quite modular, so they can be
written and removed easily.   They are easy to write in some cases, while in other cases
one needs to know the intricacies of the data structures in order to properly navigate or
modify them.  Commands are allowed to look at or modify any part of the simulation
structure, making them quite powerful, but also problematic if they are written
incorrectly.  Thus, proofread and check your commands before releasing them!

To write a command, do the following steps, which can be done in absolutely any
order:

1.  In the list of runtime commands in the user portion of the documentation, write a
description of the new command.  It will need a name, which will be listed below
as name.

2.  In smollib2.c, add a new declaration to the top of the file for the command, which
looks like:

int cmdname(simptr sim,cmdptr cmd,char *line2);

3.  The first function of smollib2.c is docommand.  In it, add an “else if()” line for the
new command.

4.  Write the function for the new command, which follows the declaration listed above.
5.  Proofread the function and test the command.
6.  Add documentation about the command to the code portion of the documentation.

Also add it to the list of code modifications in the final portion of the code
documentation.

5.  Functions in smoldyn.c (simulation control and graphics)

The source code file smoldyn.c contains high level functions that allow program
entry from the shell, exit to the shell, functions that manage the simulation, and functions
that take care of graphics.  These functions are all declared locally and thus cannot be
called from externally.  The structure of this segment is largely determined by the
constraints of the OpenGL framework, in which control is passed from the main program
to OpenGL and is never returned.  As a result, the only way to quit a simulation that uses
graphics is either by having the user choose quit from the menu or with the standard
library command exit(0).  The former method was chosen, but has the drawback that
there is no way to free the simulation structure before terminating the program.  Instead,
Smoldyn relies on the system to free the allocated memory.  Without graphics, a more
conventional C structure is used, including freeing of memory upon completion and a
normal return to the shell, although the structure of the code is still slightly strange due to
its need to be compatible with the OpenGL segment.

5.1 Non-OpenGL functions

int simulatetimestep(simptr sim,int ctr[]);
void endsimulate(simptr sim,int vb,int ctr[],time_t tstt,int er);
void smolsimulate(simptr sim,int vb);
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int main(int argc,char *argv[]);

int simulatetimestep(simptr sim,int ctr[]);
simulatetimestep runs the simulation over one time step.  If an error is encountered
at any step, or a command tells the simulation to stop, or the simulation time
becomes greater than or equal to the requested maximum time, the function returns
an error code to indicate that the simulation should stop; otherwise it returns 0 to
indicate that the simulation should continue.  Error codes are 1 for simulation
completed normally, 2 for error with assignmolecs, 3 for error with zeroreact, 4 for
error with unireact, 5 for error with bireact, 6 for error with molsort, or 7 for
terminate instruction from docommand (e.g. stop command).  Errors 2 and 6 arise
from insufficient memory when boxes were being exanded and errors 3, 4, and 5
arise from too few molecules being allocated initially.

void endsimulate(simptr sim,int vb,int ctr[],time_t tstt,int er);
endsimulate takes care of things that should happen when the simulation is
complete.  This includes executing any commands that are supposed to happen after
the simulation, displaying numbers of simulation events that occurred, and
calculating the execution time.  er is a code to tell why the simulation is ending,
which has the same values as those returned by simulatetimestep.  If graphics are
used, this routine just returns to where it was called from (which is TimerFunction);
otherwise, it frees the simulation structure and then returns (to smolsimulate and
then main).

void smolsimulate(simptr sim,int vb);
smolsimulate runs the simulation without graphics.  It does essentially nothing
other than running simulatetimestep until the simulation terminates.  At the end, it
calls endsimulate and returns.

int main(int argc,char *argv[]);
main is a simple routine that provides an entry point to the program.  It checks the
command line arguments, prints a greeting, inputs the configuration file name from
the user, and then calls setupstructs to load the configuration file and set up all the
structures.  If all goes well, it calls simulate or simulategl to run the simulation.

5.2 Functions that require OpenGL

void RenderSurfaces(simptr sim);
void RenderScene(void);
void TimerFunction(int value);
void smolsimulategl(simptr sim,int vb);

void RenderSurfaces(simptr sim);
Draws all surfaces in the simulation using OpenGL graphics.

void RenderScene(void);
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RenderScene is the call-back function for OpenGL that displays the graphics.  This
function simply draws a box for the simulation volume, as well as points for each
molecule.

void TimerFunction(int er);
TimerFunction is the call-back function for OpenGL that runs the simulation.  er is
positive if the simulation should quit due to a simulation error or normal ending, er
is negative if the simulation has been over, and er is 0 if the simulation is
proceeding normally.  This also looks at the state defined in my opengl2 library; if
it is 0, the simulation is continuing, if it is 1, the simulation is in pause mode, and if
it is 2, the user told the simulation to quit.  This function runs one simulation time
step, posts graphics redisplay flags, and saves TIFF files as appropriate.

void smolsimulategl(simptr sim,int vb);
smolsimulategl initiates the simulation using OpenGL graphics.  It does all
OpenGL initializations, registers OpenGL call-back functions, sets the global
variables to their proper values, and then hands control over to OpenGL.  This
function returns as the program quits.  sim is a pointer to the simulation structure
and vb is 1 for verbose operation and 0 for non-verbose.

6.  Smoldyn modifications

6.1 Modifications made for version 1.5 (released 7/03).

Added heirarchical configuration file name support.
Zeroreact assigns the correct box for new molecules.
The user can choose the level of detail for the bimolecular interactions (just local, nearest

neighbor, all neighbor, including periodic, etc.)
Bimolecular reactions were slow if most boxes are empty.  Solution was to go down

molecule list rather than box list.
Absorbing wall probabilities were made correct to yield accurate absorption dynamics at

walls.
Cleaned up and got rid of old commands.
The current time input was made useful.
Graphics were improved by adding perspective and better user manipulation.
Simulation pausing was made possible using graphics and improved without graphics.
If a command was used with a wrong file name, the command string became corrupted

during the final command call.  This was fixed by Steve Lay.
Fixed the neighbor list for bimolecular reactions between mobile and immobile reactants.
Reactions were made possible around periodic boundaries.
Molecules were lost sometimes.  This bug was fixed: 4 lines before end of molsort:

was:   while(!live[m]) {
now:  while(!live[m]&&m<nl[ll]) {

Output files now allow the configuration file to be in a different folder as Smoldyn.
Added an output file root parameter.
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Added the command replacexyzmol.  Afterwards, the code for the command was sped up
considerably.

Sped up the command excludebox.
Command time reports were fixed for type b and a commands.
Added more types of command timing codes.
Improved accuracy of unireact so that it correctly accounts for multiple reactions from

one identity.
Improved product parameter entry and calculation, as well as the output about reaction

parameters.
Added the routine checkparams to check that the simulation parameters are reasonable.

6.2 Modifications made for version 1.51 (released 9/5/03).

Fixed a minor bug in doreact which allowed the molecule superstructure indicies to
become illegal if not enough molecules were allocated.

Fixed a minor bug in cmdreact1 which did not check for errors from doreact.
Added command molpos.
Moved version number from a printf statement to a macro, in smoldyn.c file.
Added command listmols2, from a file sent to me by Karen Lipkow.
Fixed a minor bug in checkparams that printed warnings for unusued reactions.
In simulatetimestep in smoldyn.c, the order of operations was diffuse, checkwalls, and

then assignmolecs.  The latter two were swapped, which should make wall
checking more accurate when time steps are used that are so long that rms step
lengths are a large fraction of box sizes.  The new version is less accurate than
before when the simulation accuracy is less than 10, but should be more accurate
when it is 10.

Replaced the coinrand call in unireact, which determines if a reaction occured, with
coinrand30 to allow better accuracy with low probabilities.  Also changed the
relevent check in checkparams.

Improved reactive volume test in checkparams.
Increased RANDTABLEMAX from 2047 to 4095.
Some modifications were made to random.h.
Fixed a major bug in rxnfree, regarding the freeing of the table elements.

6.3 Modifications made for version 1.52 (released 10/24/03)

Changed comments in rxnparam.h and rxnparam.c, but no changes in code.
Changed cmdsavesim in smollib2.c to allow it to compile with gcc.
Added another call to assignmolecs in simulatetimestep in smoldyn.c, after the call to

checkwalls, to make sure that all molecules are assigned properly before checking
reactions.  This slows things down some, but should allow slightly longer time
steps.
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To the opengl2.c file, the KeyPush function was modified so now pressing ‘Q’ sets the
Gl2PauseState to 2, to indicate that a program should quit.  A few modifications
were also made in smoldyn.c function TimerFunction to make use of this.

Corrected two significant bugs in the checkwalls function in smollib.c regarding
absorbing walls.  First, it didn’t work properly for low side walls.  Also, the
probability equation was incorrect, which was noticed by Dan Gillespie.

Fixed a minor bug in cmdsavesim in smollib2.c file, which caused an output line for
rate_internal to be displayed for declared but unused reactions.

Several commented out functions in loadrxn were removed because they were obsolete
and have been replaced by product_param.  They were: p_gem, b_rel, b_abs, offset,
fixed, and irrev.

A command superstructure was created, which moved several structure elements out of
the simulation structure.  No new functionality was created, but the code is cleaner
now.  New routines are cmdssalloc and cmdssfree.  Updated routines are: simalloc,
simfree, loadsimul, setupstructs, cmdoutput (including function declaration),
openoutputfiles (including function declaration and ending state if an error
occurs), commandpop (including function declaration), checkcommand, endsimulate,
savesim, main, and all commands that save data to files.

Renamed the “test files” folder to “test_files”.

6.4 Modifications made for version 1.53 (released 2/9/04)

Cleaned up commands a little more by writing routine getfptr in smollib2.c and calling
it from commands that save data, rather than repeating the code each time.

All routines that dealt with the command framework were moved to their own library,
called SimCommands.  This also involved a few function name and argument
changes, affecting smoldyn.c, smollib.c, smollib.h, smollib2.c, and smollib2.h.

Formatting was cleaned up for structure output routines.
Swapped drawing of box and molecules, so box is on top.  Also increased default box

line width to 2 point.
Computer now beeps when simulation is complete.
Modified SimCommand library so that each invocation of a command is counted and also

changed declaration for docommand in smollib2.  This change was useful for
improving the command listmols2 so it can be run with several independent time
counters.  Also, wrote command listmols3.

Wrote the new configuration file statement boxsize.
Wrote the new commands excludesphere and includeecoli.
Wrote the commands overwrite and incrementfile, which also involved some changes

to the SimCommand library and required the new configuration file statement
output_file_number.

Added a new configuration file statement frame_thickness.
When simulation is paused using OpenGL, the simulation time at which it was paused is

now displayed to the text window.
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6.5 Modifications made for version 1.54 (released 3/3/04)

Swapped order of commands and OpenGL drawing so that commands are executed
before displaying results.  Also wrote section 3.2 of the documentation to discuss
this ordering and other timing issues.

Wrote documentation section 3.3 on surface effects on reaction rates and added the
reactW set of test files.

6.6 Modifications made for version 1.55 (released 8/20/04)

Improved graphics manipulations and added abilitity to save image as a TIFF file.  This is
not documented yet.

Made a few tiny changes in random.c and string2.h and .c.
The configuration file statement max_cmd is now obsolete because the command queue is

automatically created and expanded as needed.  Also, lots of changes were made to
the library file SimCommand.c so that there are now two command queues: one is
as before and uses floating point times for command execution and the other uses
an integer counter for commands that are supposed to happen every, or every n’th,
iteration.

Added error strings to commands as well as the macro statement SCMDCHECK.

6.7 Modifications made for version 1.56 (released 1/14/05)
Made lots of changes in opengl2.c.
#include files for gl.h and glut.h now use brackets rather than quotes.
Improved graphics significantly.
Rewrote TimerFunction to clarify code.
Added ability to save TIFF stacks which can be compiled into movies.
Added keypress command.
Added comments to the code.
User and programmer parts of documentation were split to separate files.

6.8 Modifications for version 1.57 (released 2/17/05)
Added command setrateint.

6.9 Modifications for version 1.58 (released 7/22/05)
Fixed 2-D graphics so they a border is now shown again around the simulation volume.
Added runtime commands replacevolmol and volumesource.
Random number table for diffusion is now shuffled before use, which significantly

reduces errors from an imperfect random number generator.
Added position ranges to mol command.
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6.10 Modifications for version 1.59 (released 8/26/05)
Random number seed is now stored and is displayed before a simulation starts.

6.11 Modifications for version 1.60 (not released, but given to Karen 9/30/05)
Fixed a small bug in checkparams.

6.12 Modifications for version 1.70 (released 5/17/06)
Added reflective, absorbing, and transparent surfaces for 1 to 3 dimensions with panel

shapes that can be: rectangle, triangle, and sphere.
Geometry.c and its header Geometry.h are new libraries that are used.
Added background and frame color options.
Reformatted and significantly updated part 2 of the Smoldyn documentation.  Added

surface descriptions to part 1 of documentation.
Changed molecule sorting in molsort so that list compacting maintains list order.
Wrote reassignmolecs to replace assignmolecs, which should increase efficiency and

allow accurate surface treatment.
Made it possible to load molecule names individually rather than all at once.  New

configuration file statements are max_name and name.
Added pointers to the live molecule lists called topl (and renamed top to topd), which

will differentiate old molecules from the new “reborn” ones.  This is important for
treating surfaces after reactions.

6.13 Modifications for version 1.71 (released 12/8/06)
Added glutInit call to main function in smoldyn.c.
Changed OpenGL drawing slightly for surfaces, so now 3D surface colors are always the

same on the front and back, but can also be semi-transparent, although with
OpenGL errors.

Added command killmolinsphere.
Cleaned up simulation loading some, with minor modifications in setupstructs,

loadsimul, and setupboxes, as well as writing of setdiffusion.  This makes it so
that molecule sorting only happens in molsort, and it took some unwanted code out
of loadsimul.

Added molecule serial numbers to the molecule structure and superstructure.
Added some elements to command structures so that commands now have storage space.
Added RnSort.c library to project, as well as some new functions in RnSort.c.
Added command meansqrdisp.
Completely rearranged order of functions in smollib.c and in documentation part II.
Cleaned up surface code.  Fixed rendering of 3-D spheres.  Added support for cylinders

and hemispheres.
Added statements: grid_thickness and block comments with /* and */.
To action_front and similar statements, allowed “all” for molecule name.
Tried to stop diffusing molecules from leaking across reflective surfaces.

6.14 Modifications for version 1.72 (released 2/26/07)
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Finally got reflective surfaces to stop leaking diffusing molecules.  This involved many
changes in the surface code sections.

Walls are no longer functional when any surfaces are defined, so new surfaces have to be
defined to serve as system boundaries.  Also, periodic surfaces are now possible.

Changed all float data types to doubles throughout smollib.c, smollib2.c, Geometry.c,
smoldyn.c, and their headers.

Made it so that bimolecular reactions across surfaces can only happen with transparent
surfaces.

Two dimensional graphics now allow panning and zooming.

7. The wish list/ to do list

7.1 Bugs to fix
3-D box cross testing, done in Geometry.c, isn’t correct for all shapes (triangles in

particular, maybe others).
Reactions can happen across periodic boundaries, as they should, but potential

obstructing surfaces are not investigated in these cases.  This may be too much
work to fix, but should at least be documented.

The savesim command needs to be updated significantly.

7.2 Desired features
More internal surface support.  There is a tremendous amount that would be very nice

here.  Simple reflective surfaces have finally been added.  Next are semi-permeable
surfaces, non-diffusing membrane-bound molecules, diffusing membrane-bound
molecules, moveable surfaces, etc.

Molecules with excluded volume.  The idea is to define “non-reactive reactions”, in
which a molecule collision would be declared exactly as they are currently for
reactions, but the result would not be a reaction, but a return of both molecules to
their starting points.  This probably requires an asynchronous design such that
molecules are diffused and interacted one at a time.

Other non-reactive interactions, such as allostery.
Complex formation.  A complex could be allowed for multiple molecules that are similar

or different molecules, with a KD.  While complexed, they would diffuse together,
and go about their reactions in their normal way.  Allowing complexes would
reduce combinatorial explosion problems that occur when each one has to be
declared as a separate species.

Fibers (such as DNA), fiber-bound molecules, etc.  Also, membrane-bound polymers
would be nice.

Variable length simulation time steps.  The less difficult method would be to figure out
how fast the system is changing as a whole and to adjust the simulation time step to
compensate for this.  A challenge though, is that it is nearly impossible to redo a
step that was determined to have been too long without introducing significant
statistical bias.  The more difficult method is to use different length time steps for
different molecules, so as to poll labile ones more often than stable ones.
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More functionality for the runtime command interpreter.  It would be nice if commands
could communicate with each other, have their own storage space (done for v.
1.71), etc.  An idea for this is to establish a bulletin board within the command
superstructure, on which commands could post and read memos.  More generally,
this could be expanded into an entire programming language if desired, although it
would take some thought on how to do it in the best way.

A new runtime command for more versatile text output.  Rather than having a pile of
specialized output commands, it would be nice to have something akin to a print
statement, where any of a wide variety of simulation variables could be printed with
a user-defined format.

Easier compilation for different systems, including pre-compiled code, Make files where
needed, a better collection of stuff in the download folder, advice on OpenGL code
access and configuration, compiling advice, etc.

Configuration file compatibility with SBML, XML, or other standards.
Addition of a graphical user interface, or at least a better user interface.  For example, it

would be nice to be able to browse the available configuration files using a standard
open file window, rather than having to know the exact path and filename.

Inclusion of continuous concentrations for chemical species that are abundant.  Ideally,
these concentrations should be updated with ODEs, PDEs, spatial- or non-spatial
Langevin dynamics, or spatial- or non-spatial Gillespie algorithm, according to the
user’s choice.

Modify main to include flags on input line.
Better graphics, including lighting sources and translucent molecules.  POV-ray may be a

good graphics program to work with.
The function assignmolecs should be deleted once it has been confirmed that

reassignmolecs is working properly.
The load functions should be cleaned up, including loadsimul, loadrxn, and loadsurface.

The filestack stuff should be encapsulated in its own set of functions, which would
also automatically take care of several commands, such as comments, end_file, and
read_file.


